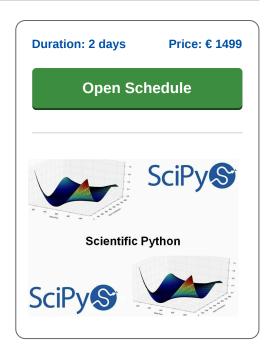


Scientific Python

Audience Scientific Python Course

Scientists, mathematicians, engineers and others who want to use the SciPy Python library to create applications and perform data analysis.

Prerequisites Course Scientific Python


Knowledge of Python programming and the NumPy library is required. Some knowledge of numerical methods in scientific computing is beneficial for the understanding.

Realization Training Scientific Python

The theory is dealt with on the basis of presentation slides. The concepts are illustrated with demos. The theory is interspersed with exercises. The course times are from 9.30 to 16.30.

Certification Course Scientific Python

The participants get well after completion of the course, an official certificate Scientific Python.

Content Scientific Python

In this course the participants will learn what can be done with the Python SciPy library for scientific computing.

Matrices in Science

The course starts with an overview of the role of matrices to solve problems in scientific computing.

Matrix Manipulation

Next the course proceeds by reviewing basic manipulation and operations on them, followed by factorizations, solutions of matrix equations, and the computation of eigenvalues and eigenvectors.

Interpolation and Approximation

Also interpolation and approximation is treated where advanced techniques are shown to approximate functions and their applications in scientific computing.

Differentiation en Integration

Differentiation techniques to produce derivatives of functions are discussed as well as integration techniques showing how to compute areas and volumes effectively.

Computational Geometry

The module Computational Geometry takes a tour of the most significant algorithms in this branch of computer science.

Statistics and Data Mining

And finally the course pays attention to statistical inference, machine learning, and data mining.

Locations

Modules Scientific Python

Module 1 : SciPy Intro	Module 2 : Matrix Calculations	Module 3 : Nonlinear Equations
What is SciPy	Singular value decomposition	Non-linear equations and systems
Installing SciPy stack	Matrix equations	Iterative methods
Anaconda distribution	Least squares	Bracketing methods
Constructing matrices	Spectral decomposition	Secant methods
Using ndarray class	Interpolations	Brent method
Using matrix class	Univariate interpolation	Simple iterative solvers
Sparse matrices	Nearest-neighbors interpolation	The Broyden method
Linear operators	Other interpolations	Powell's hybrid solver
Scalar multiplication	Differentiation and Integration	Large-scale solvers
Matrix addition	Numerical differentiation	Optimization
Matrix multiplication	Symbolic differentiation	Unconstrained optimization
Traces and determinants	Symbolic integration	Constrained optimization
Transposes and inverses	Numerical integration	Stochastic methods
Module 4 : Computational Geometry	Module 5 : Descriptive Statistics	Module 6 : Inference and Data Analysis
Plane geometry	Probability	Statistical inference
Static problems	Symbolic setting	Estimation of parameters
Convex hulls	Numerical setting	Bayesian approach
Voronoi diagrams	Data exploration	Likelihood approach
Triangulations	Picturing distributions	Interval estimation
Shortest paths	Bar plots	Frequentist approach
Geometric query problems	Pie charts	Bayesian approach
Point location	Histograms	Likelihood approach
Nearest neighbors	Time plots	Data mining
Range searching	Scatterplots and correlation	Machine learning
Dynamic problems	Regression	Trees and Naive Bayes
Bézier curves	Analysis of the time series	Gaussian mixture models
Module 7 : Mathematical Imaging		'
Digital images		
Binary		
Gray-scale		

Color

Alpha channels

Smoothing filters

Multivariate calculus

Statistical filters

Fourier analysis

Wavelet decompositions

Image compression

Image editing

Rescale and resize

Swirl

Image restoration

Noise reduction