
www.spiraltrain.nl

Object Oriented Programming

Audience Course Object Oriented Programming
The course Object Oriented Programming is intended for anyone who wants to learn
object oriented programming with classes and objects.

Prerequisites Course Object Oriented Programming
In order to participate in this course experience with programming in a procedural
programming language is required.

Realization Training Object Oriented Programming
The theory is discussed on the basis of presentation slides. The theory is explained
further through demos. After discussing a module there is the possibility to practice.
Course times are from 9.30 to 16.30.

Certification Course Object Oriented Programming
After successful completion of the course the participants receive an official
certificate Object Oriented Programming.

Price: € 1999Duration: 3 days

Open Schedule

Content Course Object Oriented Programming
In the course Object Oriented Programming participants learn to program in an object oriented language such as Java, C# or Python.
The participants can choose which language they want to use in the course. Object Orientation has proven to be a fertile programming
paradigm. Most modern programming languages ​​today are object oriented and some older languages ​​such as C or PHP have added
Object Orientation later.

Intro Object Orientation
The course starts with an overview of how Object Orientation evolved from other software development paradigms such as structured
and procedural programming.

Lowering of Semantic Gap
An important advantage of Object Orientation is that domain concepts can be found directly in the software. It is explained how this
lowering of the Semantic Gap makes the code more understandable and maintainable.

Classes and Objects
Subsequently concepts such as Classes and Objects, Fields and Methods, Getters and Setters, Constructors and Destructors are
discussed. The concepts are the same for all Object Oriented languages, but in the course attention is also paid to differences at the
detail level.

Encapsulation
Also treated is the concept of Encapsulation with which the internal data of classes is shielded from the outside world so that changes in
the implementation can be made without modifications to the calling code.

Inheritance and Polymorphism
The concepts of Inheritance and Polymorphism are also part of the course program. By means of Inheritance derived classes can reuse
the code from the base class and thus avoid duplication of code. Polymorphism makes it possible to give base class methods a different
meaning in a derived class. The runtime environment can then automatically find these methods through dynamic binding.

Design Patterns
Finally attention is paid to Design Patterns in Object Oriented software, which provide standard template solutions for common
problems.

SpiralTrain BV
Standerdmolen 10, 2e verdieping
3995 AA Houten

info@spiraltrain.nl
www.spiraltrain.nl
Tel.: +31 (0) 30 – 737 0661

Locations
Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online



www.spiraltrain.nl

Modules Course Object Oriented Programming

Module 1 : Intro Object Orientation Module 2 : Classes and Objects Module 3 : Encapsulation

OO Origins
Abstraction Levels
Domain Analysis
Unstructured Programming
Procedural Programming
Object Oriented Programming
OO Benefits
Reusability
Lowering Semantic Gap
Higher Abstraction
Objects as Domain Concepts
Objects as Program Concepts

Classes are Types
Objects are Instances
Fields
Methods
Creating Objects
Object Initialization
Constructors
Using Objects
Getters and Setters
Destructors
Current Object
this or self

Encapsulation Benefits
Information Hiding
Access Specifiers
private and public
Implementation Changes
Validity Checks
Ensuring Data Validity
Class Variables
static Data
Class Methods
static Methods
static Initializers

Module 4 : Inheritance Module 5 : Polymorphism Module 6 : Design Patterns

Deriving Classes
Class Hierarchies
Hiding Instance Variables
Overriding Methods
Overloading Methods
Constructor Chaining
Accessing Base Class
protected Members
super or base
Multiple Inheritance

Call Overridden Functions
Virtual Functions
Role of v-table
Polymorphism Benefits
Abstract Classes
Incomplete Base Classes
Concrete Classes
Interfaces
Interface Implementation
Dynamic Binding

What are Design Patterns?
Common Problems
Pattern Solutions
Singleton Pattern
private Constructors
Creation Functions
Adapter Pattern
Adapting an Interface
Observer Pattern
Publish and Subscribe

SpiralTrain BV
Standerdmolen 10, 2e verdieping
3995 AA Houten

info@spiraltrain.nl
www.spiraltrain.nl
Tel.: +31 (0) 30 – 737 0661

Locations
Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online


