
www.spiraltrain.nl

Microservices Design Patterns

Audience Microservices Design Patterns
The course Microservices Design Patterns is intended for senior developers and
software architects who want to implement design patterns in a microservices
architecture.

Prerequisites Course Microservices Design Patterns
Good understanding of software development concepts and distributed systems.
Experience with cloud platforms and containers is beneficial for understanding.

Realization Training Microservices Design Patterns
Demos under guidance of the trainer, alternated with presentations, discussions of
case studies and practical exercises.

Certificate Microservices Design Patterns
After successfully completing the course, attendants will receive a certificate of
participation Microservices Design Patterns.

Price: € 2999Duration: 4 days

Open Schedule

Content Course Microservices Design Patterns
In the course Microservices Design Patterns, participants learn which design patterns can be applied in a Microservices Architecture.
The structure and applicability of the different design patterns is discussed in depth.

Intro Microservices
This module introduces microservices as an architectural style. It compares monolithic and microservices architectures, highlighting
benefits like scalability, cohesion, and independence, while addressing challenges like complexity and interdependence. Key principles
include single responsibility, minimal coupling, and high cohesion.

Architecture Patterns
Participants explore common system design and microservices architecture patterns. Topics include layered architectures, separation of
concerns, RESTful communication, Backend for Frontend, and Micro Frontends.

API Gateway Pattern
This module explains the API Gateway pattern as a facade and reverse proxy. It serves as a single entry point for clients, supports
request aggregation and routing, and integrates with service registries for dynamic discovery.

Database per Service
This module focuses on each microservice managing its own database. Key topics include polyglot persistence, independent scalability,
data encapsulation, and the avoidance of the shared database anti-pattern.

Saga Pattern
Here, participants learn how to handle distributed transactions using the Saga pattern. It includes concepts like compensating
transactions, choreography vs orchestration, and maintaining consistency without two-phase commit.

Aggregator Pattern
The aggregator pattern allows combining responses from multiple microservices. The module covers variations like scatter-gather,
chaining, branching, comparison proxies, and the importance of service discovery.

Circuit Breaker Pattern
This module teaches how the circuit breaker pattern prevents cascading failures in microservices. It explains availability handling, failure
isolation, and the various circuit states: open, closed, and half-open.

Command Query Segregation
Participants learn about the CQRS pattern, where read and write operations are separated. It avoids inefficient joins and allows different
storage models for queries and commands.

Asynchronous Messaging
This module discusses inter-service communication using messaging. Topics include publish-subscribe models, message brokers like
RabbitMQ and Kafka, the AMQP protocol, and how async messaging supports scalability and decoupling.

Event Sourcing
Participants explore event sourcing, where events are stored instead of traditional database rows. Events represent the single source of
truth and can be replayed for rebuilding state or auditing.

SpiralTrain BV
Standerdmolen 10, 2e verdieping
3995 AA Houten

info@spiraltrain.nl
www.spiraltrain.nl
Tel.: +31 (0) 30 – 737 0661

Locations
Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online



Strangler Pattern
This module introduces the strangler pattern for modernizing legacy systems. It explains gradual migration strategies using an API
gateway as a proxy to replace legacy components step by step.

Decomposition Patterns
The final module discusses how to split systems into microservices based on business capabilities, subdomains, and bounded contexts.
Strategic and tactical Domain Driven Design are key concepts.

www.spiraltrain.nl

Modules Course Microservices Design Patterns

Module 1: Intro Microservices Module 2: Architecture Patterns Module 3: API Gateway Pattern

What are Microservices?
Monolith versus Microservices
Benefits of Microservices
Challenges of Microservices
Single Responsibility
Minimize Coupling
Maximize Cohesion
Scalability

System Design Patterns
Layered Architectures
Separation of Concern
Microservices Patterns
Synchronous Communication
Using REST and HTTP
Backend for Frontend
Micro Frontends

What is an API Gateway?
Facade Functionality
Reverse Proxy
Single Entry Point
Requests Aggregation
Request Routing
Service Registry
Service Discovery

Module 4: Database per Service Module 5: Saga Pattern Module 6: Aggregator Pattern

Dedicated Databases
Separation of Concerns
Independent Data Management
Polyglot Persistence
Independent Scaling
Data Encapsulation
Reducing Coupling
Shared Database Anti-Pattern

Transaction Handling
Distributed Transactions
Two Phase Commit
Maintaining Data Consistency
Compensating Transactions
Saga Coordination
Saga Choreography
Saga Orchestration

Distributing Requests
Aggregating Results
Scatter Gather Variation
Chained Variation
Multiple Chains
Branch Variation
Comparison Proxy Pattern
Using Service Discovery

Module 7: Circuit Breaker Pattern Module 8: Command Query Segregation Module 9: Asynchronous Messaging

Need for Circuit Breaking
Failing Microservices
High Availability
Preventing Downtime
Circuit Barrier
Preventing Cascade Failure
Circuit Breaker States
Open, Closed, Half Open

CQRS Pattern
Separate Operations
Avoid Complex Queries
Prevent Inefficient Joins
Read versus Update
Commands for Update
Queries for Read
Different Databases

Interprocess Communication
Asynchronous Communication
Backend Internal Microservices
DIP Principle
Publish and Subscribe
Using Message Brokers
async AMQP protocol
Rabbit MQ and Kafka

Module 10: Event Sourcing Module 11: Strangler Pattern Module 12: Decomposition Patterns

Storing Events
Single Source of Truth
Sequential Event List
Materialized Views
Denormalized Views
Splitting Databases
Replaying Events
Increase Query Performance

Legacy System Modernization
Application Migration
Evolve Gradually
Avoid Bing Bang Rewrites
Resource Utilization
Risk Management
Implementing Strangulation
API Gateway as Proxy

Decomposing Microservices
By Business Capability
By Subdomain
Domain Driven Design
Bounded Context Pattern
Propagating Cohesiveness
Strategic DDD
Tactical DDD

SpiralTrain BV
Standerdmolen 10, 2e verdieping
3995 AA Houten

info@spiraltrain.nl
www.spiraltrain.nl
Tel.: +31 (0) 30 – 737 0661

Locations
Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online


