
www.spiraltrain.nl

iOS Development with SwiftUI

Audience Course iOS Development with SwiftUI
The course iOS Development with SwiftUI is intended for developers who want to
use the declarative SwiftUI framework to develop apps for iPhone and iPad.

Prerequisites iOS Development with SwiftUI
To participate in the course iOS Development with SwiftUI, prior knowledge of
programming in the Swift language is desirable.

Realization Training iOS Development with SwiftUI
The theory is treated on the basis of presentation slides and demos. There is ample
opportunity to practice. The course works with the latest version of the iOS SDK and
XCode. The course times are from 9.30 to 16.30.

Certification iOS Development with SwiftUI
After successfully completing the course the participants receive a certificate iOS
Development with SwiftUI.

Price: € 2650Duration: 4 days

Open Schedule

Content Course iOS Development with SwiftUI
In the course iOS development with SwiftUI, participants learn to use the programming language Swift and the declarative SwiftUI
framework for the development of apps for the iPhone and iPad. The XCode Development Environment is used for developing the iOS
apps and the many possibilities of this Integrated Development Environment are discussed.

Swift Review
The course iOS Development with SwiftUI kicks off with a review of key elements of the Swift programming language. This includes the
discussion of type inference, classes, structures, guards and closures.

Swift UI Architecture
Next the declarative and data driven SwiftUI syntax and the use of SwiftUI projects in XCode are discussed. Attention is also paid to the
SwiftUI App and UI hierarchy, the various SwiftUI views, stacks, frames and also to event handling in Swift UI.

Data Persistence
There are several ways to store data in SwiftUI apps. Scene Storage and App Storage are treated and access to the file system of a
device is discussed as well. Attention is also paid to storing data in a key value store and in a relational database such as SQLite.
Lifecycle modifiers are also reviewed.

Navigation
Navigating between different screens in a SwiftUI app is also part of the program of the course. This section discusses the use of
NavigationViews and NavigationLinks that can be included in List and Dynamic Lists.

Gestures
Gestures in mobile apps relate to interaction with the device through taps, clicks and swipes. The use of gestures in SwiftUI is treated as
well as the combination with animations.

SwiftUI Widgets
Widgets are the visual building blocks of the user interface of a Swift UI App. Various widgets such as lists, grids, buttons, switches,
tables, date pickers and maps are covered. Attention is also paid to the creation of User Defined widgets with the WidgetKit.

UI Kit Integration
Finally the course discusses how existing iOS apps based on the UI kit architecture can be integrated with the SwiftUI architecture. The
role of UIViewControllers and Storyboards is covered here.

SpiralTrain BV
Standerdmolen 10, 2e verdieping
3995 AA Houten

info@spiraltrain.nl
www.spiraltrain.nl
Tel.: +31 (0) 30 – 737 0661

Locations
Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online



www.spiraltrain.nl

Modules Course iOS Development with SwiftUI

Module 1 : Swift Review Module 2 : SwiftUI Intro Module 3 : SwiftUI Architecture

Type Inference
Type Casting
Data Structures
Protocols
Guards
Classes
Structures
Optional Types
Closures
Extensions
Property Wrappers
Stored Properties
Computed Properties

SwiftUI Projects
SwiftUI in XCode
UIKit and Interface Builder
SwiftUI Declarative Syntax
SwiftUI is Data Driven
SwiftUI versus UIKit
Xcode in SwiftUI Mode
Preview Canvas and Pinning
Multiple Device Configurations
App on Simulators
App on Physical Devices
Build Errors
UI Layout Hierarchy

SwiftUI App Hierarchy
App and Scenes
SwiftUI Views
Basic Views
Additional Layers
Subviews
Views as Properties
Modifying Views
Custom Modifiers
Basic Event Handling
Custom Container Views
ContentView.swift File
Assets.xcassets

Module 4 : Stacks and Frames Module 5 : Lifecycle Modifiers Module 6 : SwiftUI Data Persistence

SwiftUI Stacks
Spacers
Alignment and Padding
Container Child Limit
Text Line Limits
Layout Priority
Traditional Stacks
Lazy Stacks
SwiftUI Frames
Frames and Geometry Reader
Cross Stack Alignment
Container Alignment
Alignment Guides

onAppear Modifiers
onDisappear Modifiers
onChange Modifier
ScenePhases
onChange Modifier
Adding Observable Object
Designing ContentView Layout
Adding Navigation
Environment Objects
State Properties
State Binding
Observable Objects
State Objects

Using AppStorage
Using SceneStorage
@SceneStorage Property Wrapper
@AppStorage Property Wrapper
Adding Data Store
Pathnames in Swift
Directories and Files
Reading and Writing from a File
Key-Value Data
Using SQLite Directly
Managed Objects
Persistent Store Coordinator
Retrieving and Modifying Data

Module 7 : Lists and Navigation Module 8 : SwiftUI Grids Module 9 : Gestures and Animation

SwiftUI Lists
SwiftUI Dynamic Lists
NavigationView
NavigationLink
Editable List
Hierarchical Lists
Loading JSON Data
Using OutlineGroup
Using DisclosureGroup
Sidebar List Style

SwiftUI Grids
LazyVGrid
LazyHGri
GridItems
Flexible GridItems
Scrolling Support
Adaptive GridItems
Fixed GridItems
Hierarchical Data
Disclosures

Basic Gestures
onChange Action Callback
Updating Callback Action
Composing Gestures
Implicit and Explicit Animation
Repeating an Animation
Explicit Animation
Animation and State Bindings
SwiftUI Transitions
Asymmetrical Transitions

Module 10 : Widgets with SwiftUI Module 11 : Integrating UIKit Module 12 : UIViews and UIViewControllers

Overview of Widgets
WidgetKit
The Widget Extension
Widget Configuration Types
Widget Entry View
Widget Timeline Entries
Widget Timeline
Widget Provider
Reload Policy
Forcing Timeline Reload
Widget Placeholders

SwiftUI and UIKit Integration
Integrating UIViews into SwiftUI
Adding a Coordinator
Handling UIKit Delegation
Handling UIKit Data Sources
Wrapping the UIScrolledView
Implementing the Coordinator
Using MyScrollView
Adding a Hosting Controller
Embedding a Container View
Testing the App

UIViewControllers and SwiftUI
Wrapping UIImagePickerController
Designing the Content View
Completing MyImagePicker
Completing the Content View
Preparing the Storyboard
Configuring the Segue Action
Overview of the Hosting Controller
UIHostingController Project
Adding the SwiftUI Content View
Embedding SwiftUI in Code

SpiralTrain BV
Standerdmolen 10, 2e verdieping
3995 AA Houten

info@spiraltrain.nl
www.spiraltrain.nl
Tel.: +31 (0) 30 – 737 0661

Locations
Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online


