
www.spiraltrain.nl

iOS Development with SwiftUI

Audience Course iOS Development with SwiftUI
The course iOS Development with SwiftUI is intended for developers who want to
use the declarative SwiftUI framework to develop apps for iPhone and iPad.

Prerequisites iOS Development with SwiftUI
To participate in the course iOS Development with SwiftUI, prior knowledge of
programming in the Swift language is desirable.

Realization Training iOS Development with SwiftUI
The theory is treated on the basis of presentation slides and demos. There is ample
opportunity to practice. The course works with the latest version of the iOS SDK and
XCode. The course times are from 9.30 to 16.30.

Certification iOS Development with SwiftUI
After successfully completing the course the participants receive a certificate iOS
Development with SwiftUI.

Price: € 2450
Duration: 4 days

Open Schedule







Content Course iOS Development with SwiftUI
In the course iOS development with SwiftUI, participants learn to use the programming language Swift and the declarative SwiftUI
framework for the development of apps for the iPhone and iPad. The XCode Development Environment is used for developing the iOS
apps and the many possibilities of this Integrated Development Environment are discussed.

Swift Review
The course iOS Development with SwiftUI kicks off with a review of key elements of the Swift programming language. This includes the
discussion of type inference, classes, structures, guards and closures.

Swift UI Architecture
Next the declarative and data driven SwiftUI syntax and the use of SwiftUI projects in XCode are discussed. Attention is also paid to the
SwiftUI App and UI hierarchy, the various SwiftUI views, stacks, frames and also to event handling in Swift UI.

Data Persistence
There are several ways to store data in SwiftUI apps. Scene Storage and App Storage are treated and access to the file system of a
device is discussed as well. Attention is also paid to storing data in a key value store and in a relational database such as SQLite.
Lifecycle modifiers are also reviewed.

Navigation
Navigating between different screens in a SwiftUI app is also part of the program of the course. This section discusses the use of
NavigationViews and NavigationLinks that can be included in List and Dynamic Lists.

Gestures
Gestures in mobile apps relate to interaction with the device through taps, clicks and swipes. The use of gestures in SwiftUI is treated as
well as the combination with animations.

SwiftUI Widgets
Widgets are the visual building blocks of the user interface of a Swift UI App. Various widgets such as lists, grids, buttons, switches,
tables, date pickers and maps are covered. Attention is also paid to the creation of User Defined widgets with the WidgetKit.

UI Kit Integration
Finally the course discusses how existing iOS apps based on the UI kit architecture can be integrated with the SwiftUI architecture. The
role of UIViewControllers and Storyboards is covered here.

SpiralTrain BV

Standerdmolen 10, 2e verdieping

3995 AA Houten

info@spiraltrain.nl

www.spiraltrain.nl

Tel.: +31 (0) 30 – 737 0661

Locations

Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online



www.spiraltrain.nl 


Modules Course iOS Development with SwiftUI

Module 1 : Swift Review Module 2 : SwiftUI Intro Module 3 : SwiftUI Architecture

Type Inference

Type Casting

Data Structures

Protocols

Guards

Classes

Structures

Optional Types

Closures

Extensions

Property Wrappers

Stored Properties

Computed Properties

SwiftUI Projects

SwiftUI in XCode

UIKit and Interface Builder

SwiftUI Declarative Syntax

SwiftUI is Data Driven

SwiftUI versus UIKit

Xcode in SwiftUI Mode

Preview Canvas and Pinning

Multiple Device Configurations

App on Simulators

App on Physical Devices

Build Errors

UI Layout Hierarchy

SwiftUI App Hierarchy

App and Scenes

SwiftUI Views

Basic Views

Additional Layers

Subviews

Views as Properties
Modifying Views

Custom Modifiers

Basic Event Handling

Custom Container Views

ContentView.swift File

Assets.xcassets

Module 4 : Stacks and Frames Module 5 : Lifecycle Modifiers Module 6 : SwiftUI Data Persistence

SwiftUI Stacks

Spacers

Alignment and Padding

Container Child Limit

Text Line Limits

Layout Priority

Traditional Stacks

Lazy Stacks

SwiftUI Frames

Frames and Geometry Reader

Cross Stack Alignment

Container Alignment

Alignment Guides

onAppear Modifiers

onDisappear Modifiers

onChange Modifier

ScenePhases

onChange Modifier

Adding Observable Object

Designing ContentView Layout

Adding Navigation

Environment Objects

State Properties

State Binding

Observable Objects

State Objects

Using AppStorage

Using SceneStorage

@SceneStorage Property Wrapper

@AppStorage Property Wrapper

Adding Data Store

Pathnames in Swift

Directories and Files

Reading and Writing from a File

Key-Value Data

Using SQLite Directly

Managed Objects

Persistent Store Coordinator

Retrieving and Modifying Data

Module 7 : Lists and Navigation Module 8 : SwiftUI Grids Module 9 : Gestures and Animation

SwiftUI Lists

SwiftUI Dynamic Lists

NavigationView

NavigationLink

Editable List

Hierarchical Lists

Loading JSON Data

Using OutlineGroup

Using DisclosureGroup

Sidebar List Style

SwiftUI Grids

LazyVGrid

LazyHGri

GridItems

Flexible GridItems

Scrolling Support

Adaptive GridItems

Fixed GridItems

Hierarchical Data

Disclosures

Basic Gestures

onChange Action Callback

Updating Callback Action

Composing Gestures

Implicit and Explicit Animation

Repeating an Animation

Explicit Animation

Animation and State Bindings

SwiftUI Transitions

Asymmetrical Transitions

Module 10 : Widgets with SwiftUI Module 11 : Integrating UIKit Module 12 : UIViews and UIViewControllers

Overview of Widgets

WidgetKit

The Widget Extension

Widget Configuration Types

Widget Entry View

Widget Timeline Entries

Widget Timeline

Widget Provider

Reload Policy

Forcing Timeline Reload

Widget Placeholders

SwiftUI and UIKit Integration

Integrating UIViews into SwiftUI

Adding a Coordinator

Handling UIKit Delegation

Handling UIKit Data Sources
Wrapping the UIScrolledView

Implementing the Coordinator

Using MyScrollView

Adding a Hosting Controller

Embedding a Container View

Testing the App

UIViewControllers and SwiftUI

Wrapping UIImagePickerController

Designing the Content View

Completing MyImagePicker

Completing the Content View

Preparing the Storyboard

Configuring the Segue Action

Overview of the Hosting Controller

UIHostingController Project

Adding the SwiftUI Content View

Embedding SwiftUI in Code

SpiralTrain BV

Standerdmolen 10, 2e verdieping

3995 AA Houten

info@spiraltrain.nl

www.spiraltrain.nl

Tel.: +31 (0) 30 – 737 0661

Locations

Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online


