
www.spiraltrain.nl

Advanced C++ Programming

Audience Course Advanced C++ Programming
This course is intended for developers who are familiar with C++ but who want to
delve into the more advanced techniques and possibilities of the language.

Prerequisites Course Advanced C++ Programming
To participate in this course knowledge of the basic concepts of C++ and extensive
experience with programming in C++ is required. The participants must be familiar
with topics such as operator overloading, templates, virtual functions and
polymorphism.

Realization Training Advanced C++ Programming
The theory is treated on the basis of presentation slides. Illustrative demos clarify the
concepts discussed. Theory and practice are interchanged and there is ample
opportunity to practice.

Official Certificate Advanced C++ Programming
Participants receive an official Advanced C++ Programming certificate after
successful completion of the course.

Price: € 2850Duration: 4 days

Open Schedule

Content Course Advanced C++ Programming
In the course Advanced C++ the new and advanced aspects of the C++ language based on the standards C++11, C++14, C++17 and
C++20 are extensively discussed.

C++11 Features
The course starts with an overview of the features introduced in C++11 such as type inference, initializer lists, range based for loop,
lambda functions and strongly typed enums.

Right References en Move Constructors
Next, the right references and the performance gains that can be achieved by using move constructors in addition to copy constructors
are discussed.

Inheritance Additions
The new possibilities regarding inheritance with the keywords default, delete, override and final are also covered. The implementation of
virtual functions and the need for virtual destructors are discussed as well.

Smart Pointers
In addition, smart pointers are looked at in detail and unique pointers, shared pointers and weak pointers are treated.

Operator Overloading and Templates
Operator overloading and templates are also on the program, which focuses on variadic templates and perfect forwarding.

RAII Pattern
The modern C++ Resource Acquisition is Initialization or RAII idiom is discussed with exception handling.

Multithreading
Threads as well as the synchronization between threads are part of the standard and are discussed. This also includes asynchronous
calls with promises and futures.

C++11, C++17 and C++20 Features
Then specific C++11, C++17 and C++20 features are discussed such as optional types, structured binding declarations and
constructions from the world of functional programming such as fold expressions.

Advanced STL
The course concludes with an overview of advanced options of the Standard Template Library STL.

SpiralTrain BV
Standerdmolen 10, 2e verdieping
3995 AA Houten

info@spiraltrain.nl
www.spiraltrain.nl
Tel.: +31 (0) 30 – 737 0661

Locations
Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online

https://www.cprogramming.com/tutorial/stl/stlintro.html


www.spiraltrain.nl

Modules Course Advanced C++ Programming

Module 1 : Modern C++ Features Module 2 : Move Semantics Module 3 : Inheritance

C++11 Features
Type Inference
Auto Keyword
Deduction with decltype
Uniform Initialization
Initializer Lists
Range Based for Loop
Null Pointer Constant
constexpr Keyword
Static Asserts
Lambda Functions
Strongly Types Enums
User Defined Literals
Raw String Literals

Reference Initialization
References and Pointers
Rvalues and Rvalues in C++
Passing and Returning References
Rvalue References
Comparing Reference Types
Rvalue Reference Usage
Assignment Operator
Copy Constructor
Passing and Returning Objects
Passing References to Objects
Move Constructor
Move Assignment Operator
Golden Rule of 5

default and delete Keyword
Delegating Constructors
Inheritance
Calling Base Class Constructors
Multiple Inheritance
Virtual Derivation
Polymorphism
Virtual Functions
Abstract Classes
Interfaces in C++
Destructors and Inheritance
Virtual Destructors
override Specifier
final Specifier

Module 4 : Smart Pointers Module 5 : Operator Overloading Module 6 : Templates

unique_ptr
Using unique_ptr
Specialization for Arrays
Replacement for std::auto_ptr
std::make_unique
shared _ptr Pointer
Control Block
shared_ptr Destruction Policy
shared_ptr Interface
Cyclic References
weak_ptr

Syntax Operator Overloading
Overloading Numeric Types
Overloading Overview
Overloading Restrictions
When not to Overload
Operators as Class Members
Operators as Friend Functions
Overloading Stream Operators
Overloading ostream and istream
Overloading Unary Operators
Overloading Binary Operators

Template Functions
Template Specialization
Template Parameter List
Inclusion Compilation Model
Class Templates
Template Member Functions
Template Parameter Scope
Templates and Statics
Templates and Friends
Alias Templates
Perfect Forwarding

Module 7 : Exception Handling Module 8 : Multiple Threads Module 9 : Synchronization

Error Conditions and Exceptions
Class Objects as Exceptions
Parameter Catch Block
Catching in Hierarchy
Golden Rule
Rethrowing Exceptions
noexcept Specifier
Preventing Resource Leaks
RAII Idiom
C++ Standard Exceptions
User Defined Exceptions
Exception Handling Costs

Multiple Threads
Benefits and Drawbacks
Thread Class
Joining Threads
Detaching Threads
Thread ID
Callables
Passing Parameters
Pass by Reference
Pass by std::ref and std::move
Member Function as Thread
Thread Local Storage

Data Corruption
Lock Guard
Automatic Lock Management
Mutex and RAII
Recursive Locking
Atomic Types
Call Once
Event Handling
Condition Variables
Wait and Notify
Promises and Futures
Asynchronous Tasks

Module 10 : C++14-17-20 Features Module 11 : Standard Template Library

Init-statement for if
Selection Initialization
Structured Binding Declarations
const if Expressions
Guaranteed Copy Elision
Inline Variables
Fold Expressions
Optional Type
Small String Allocations
String View
Generic lambdas
Aggregate initialization

STL Core Components
Containers, Algorithms and Iterators
Vectors, Lists and Dequeues
Adapters and Associative Containers
Maps and Hash Maps
Bitsets
STL Iterators
Reverse and Iostream iterators
Function objects
STL Algorithms
Predicates and Comparators
STL Allocators

SpiralTrain BV
Standerdmolen 10, 2e verdieping
3995 AA Houten

info@spiraltrain.nl
www.spiraltrain.nl
Tel.: +31 (0) 30 – 737 0661

Locations
Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online


