
www.spiraltrain.nl

Building Large Language Models

Audience Course Building Large Language Models
The course Building Large Language Models is intended for engineers who want to
design transformer-based LLMs.

Prerequisites Course Building Large Language Models
Participants should be comfortable with Python. Prior exposure to PyTorch or a
similar Deep Learning framework is helpful.

Realization Training Building Large Language Models
The training blends concise theory with guided, hands-on labs. Through code-alongs
you’ll build a mini-GPT, prepare datasets, run pretraining and fine-tuning and deploy
models.

Building Large Language Models Certificate
After completion, participants receive a certificate of participation for the course
Building Large Language Models.

Price: € 3200Duration: 4 days

Open Schedule

Content Building Large Language Models
The course Building Large Language Models from SpiralTrain teaches you how to design, train, fine-tune, and deploy transformer-based
LLMs using PyTorch and modern tooling. You will learn to build robust text pipelines and tokenizers, implement a GPT-style model with
pretraining, apply instruction tuning and RAG and serve models reliably in production.

LLM Intro
The course starts by explaining what LLMs are, where they’re used, and the lifecycle of building vs. using them. We introduce the
Transformer/GPT architecture, how models learn from large datasets, and when to use classic QA versus RAG.

Working with Text Data
You’ll move from raw text to model-ready tensors: tokenization (e.g., BPE), token→ID mapping, special/context tokens, and sliding-
window sampling. We cover embeddings and positional encodings while handling unknown words and basic sentence structure.

Attentions Mechanism
This module demystifies self-attention for long-sequence modeling: queries, keys, values, and causal masking to hide future tokens. We
add positional encoding, multi-head attention, and stacked layers to capture dependencies across different parts of the input.

Pytorch Deep Learning
This module explains PyTorch fundamentals—tensors, core operations, and training loops—with the tooling to measure model quality.
We cover feature scaling/normalization (including categorical features), activation and loss functions, and backpropagation.

Neural Networks
Next the course proceeds with building MLPs and CNNs in PyTorch while choosing appropriate activations and losses and implementing
backprop. We touch NLP-specific preprocessing and walk through end-to-end binary and multi-class classification.

GPT from scratch
Next you will implement a minimal GPT with layer normalization, residual (skip) connections, and attention + feed-forward (GELU)
blocks with weight tying. You’ll also wire up transformer blocks and generate text to see the model in action.

Pretraining
Then pretrain the LLM on unlabeled text with next-token prediction, tracking training vs. validation losses. You will explore decoding
strategies (e.g., temperature, top-k), control randomness for reproducibility, and save/load PyTorch weights.

Tuning for Classification
Then the course covers preparing datasets and dataloaders, initializing from pretrained weights, and add a classification head with
softmax. Train and evaluate with loss/accuracy, culminating in an LLM-based spam-classification example.

Fine-Tuning
Finally you will practice supervised instruction tuning: format datasets, batch efficiently, and fine-tune a pretrained LLM. Also evaluate
outputs, export responses/checkpoints, and apply parameter-efficient methods such as LoRA.

SpiralTrain BV
Standerdmolen 10, 2e verdieping
3995 AA Houten

info@spiraltrain.nl
www.spiraltrain.nl
Tel.: +31 (0) 30 – 737 0661

Locations
Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online



www.spiraltrain.nl

Modules Building Large Language Models

Module 1 : LLM Intro Module 2 : Working with Text Data Module 3 : Attentions Mechanism

What is an LLM?
Applications of LLMs
Stages of Building LLMs
Stages of Using LLMs
Transformer Architecture
Utilizing Large Datasets
GPT Architecture Internals
Learn Language Patterns
Retrieval Augmented Generation
Question and Answer Systems
QA versus RAG
Building an LLM

Word Embeddings
Decoders and Encoders
Decoder Only Transformer
Tokenizing text
Convert Tokens into IDs
Special Context Tokens
Understand Sentence Structure
Byte Pair Encoding
Unknown Words
Sampling with Sliding Window
Creating Token Embeddings
Encoding Word Positions

Modeling Long Sequences
Capturing Data Dependencies
Attention Mechanisms
Attending Different Input Parts
Using Self-Attention
Trainable Weights
Hiding Future Words
Positional Encoding
Causal Attention
Masking Weights with Dropout
Multihead Attention
Stacking Attentions Layers

Module 4 : Pytorch Deep Learning Module 5 : Neural Networks Module 6 : GPT from scratch

Deep Learning Intro
Overview of PyTorch
PyTorch Tensors
Tensor Operations
Model Evaluation Metrics
Feature Scaling
Feature Normalization
Categorical Features
Activation Functions
Loss Functions
Backpropagation

Neural Networks Intro
Building NN with PyTorch
Multiple Layers of Arrays
Convolutional Neural Networks
Activation Functions
Loss Functions
Backpropagation
Natural Language Processing
Stopword Removal
Binary Classification
Multi-class Classification

Coding an LLM Architecture
Layer Normalization
Normalizing Activations
Feed Forward Network
GELU Activations
Adding Shortcut Connections
Connecting Attention
Weight Tying
Linear Layers in Transformer Block
Coding the GPT Model
Generating Text

Module 7 : Pretraining Module 8 : Tuning for Classification Module 9 : Fine-Tuning

Pretraining on Unlabeled Data
Calculating Text Generation Loss
Training Losses
Validation Set Losses
Training an LLM
Decoding Strategies
Control Randomness
Temperature Scaling
Saving Model Weights in PyTorch
Loading Pretrained Weights

Categories of Fine-Tuning
Preparing the Dataset
Creating Data Loaders
Top-k Sampling
Soft-Max Function
Initializing with Pretrained Weights
Adding Classification Head
Classification Loss and Accuracy
Fine-tuning on Supervised Data
Using LLM as Spam Classifier

Instruction Fine-tuning
Supervised Instruction
Preparing a Dataset
Organizing Training Batches
Creating Data Loaders
Loading a pretrained LLM
Fine-tuning the LLM
Extracting and Saving Responses
Evaluating Fine-tuned LLM
Fine Tuning with LoRA

SpiralTrain BV
Standerdmolen 10, 2e verdieping
3995 AA Houten

info@spiraltrain.nl
www.spiraltrain.nl
Tel.: +31 (0) 30 – 737 0661

Locations
Houten, Amsterdam, Rotterdam, Eindhoven,
Zwolle, Online


