fbpx
  • nl
  • en

Cursus Machine Learning met Python

Cursus Machine Learning met Python
Regio:
  • Modules
  • Cursus
  • Inhoud
  • Algemene informatie
    Algemeen
  • Reviews
  • Module 1 : Intro Machine Learning

    Module 2 : Numpy and Pandas

    Module 3 : Ski-Kit Learn Library

    What is Machine Learning?
    Building Models of Data
    Model Based Learning
    Tunable Parameters
    Supervised Learning
    Labeling Data
    Discrete Labels
    Continuous Labels
    Classification and Regression
    Unsupervised Learning
    Data Speaks for Itself
    Clustering and Dimensionality Reduction
    Numpy Arrays
    NumPy Data Types
    Pandas Data Frames
    Inspect Data
    Operations on Data
    Missing Data
    Pandas Series
    Pandas Indexes
    Time Series
    MatplotLib
    Plotting with Pandas
    Seaborn Library
    Data Representation
    Estimator API
    Features Matrix
    Target Array
    Seaborn Visualization
    Model Classes
    Choosing Hyperparameters
    Model Validation
    Fit and Predict Method
    Label Predicting
    Training and Testing Set
    Transform Method

    Module 4 : Feature Engineering

    Module 5 : Naive Bayes Classification

    Module 6 : Linear Regression

    Categorical Features
    Vectorization
    Text and Image Features
    Derived Features
    Adding Columns
    Handling Missing Data
    Imputation of Missing Data
    Feature Pipelines
    Polynomial Basis Functions
    Gaussian Basis Functions
    Regularization
    Naive Bayes Classifiers
    Applicability
    High Dimensional Datasets
    Bayes’s Theorem
    Generative Models
    Gaussian Naive Bayes
    Probabilistic Classification
    predict_proba Method
    Multinomial Naive Bayes
    Confusion Matrix
    When to Use Naive Bayes
    Slope and Intercept
    LinearRegression Estimator
    coef_ and intercept_ Parameter
    Multidimensional Linear Models
    Basis Function Regression
    Polynomial Regression
    PolynomialFeatures Transformer
    Gaussian Basis Functions
    Overfitting
    Ridge Regression
    Lasso Regularization

    Module 7 : Support Vector Machines

    Module 8 : Decision Trees

    Module 9 : Principal Component Analysis

    Discriminative Classification
    Maximizing the Margin
    Linear Kernel
    C Parameter
    Support Vectors
    SVM Visualization
    Kernel SVM
    Radial Basis Function
    Kernel Transformation
    Kernel Trick
    Softening Margins
    Ensemble Learner
    Creating Decision Trees
    DecisionTreeClassifier
    Overfitting Decision Trees
    Ensembles of Estimator
    Random Forests
    Parallel Estimators
    Bagging Classifier
    Random Forest Regression
    RandomForestRegressor
    Non Parametric Model
    PCA Unsupervised Learning
    Learn about Relationships
    Principal Axes
    Demonstration Data
    Affine Transformation
    Components
    Explained Variance
    Dimensionality Reduction
    Inverse Transformation
    Explained Variance Ratio
    PCA as Noise Filtering
  • Doelgroep Cursus Machine Learning met Python

    Cursus Machine Learning met PythonDe cursus Machine Learning met Python is bedoeld voor data scientists die Python en machine learning libraries willen gebruiken voor het doen van voorspellingen op basis van modellen.

    Voorkennis training Machine Learning met Python

    Om aan deze cursus te kunnen deelnemen is kennis van en ervaring met Python vereist en kennis van data analyse libraries zoals Numpy, Pandas en Matplotlib wenselijk.

    Uitvoering Cursus Machine Learning met Python

    De theorie wordt behandeld aan de hand van presentaties. Illustratieve demo's verduidelijken de concepten. De theorie wordt afgewisseld met oefeningen. Als ontwikkelomgeving wordt de Anaconda distributie met Jupyter notebooks gebruikt. De cursustijden zijn van 9.30 tot 16.30.

    Officieel Certificaat Machine Learning met Python

    De deelnemers krijgen na het goed doorlopen van de cursus een officieel certificaat Machine Learning met Python.

  • Cursus Machine Learning met Python

    In de cursus Machine Learning met Python leert u hoe u machine learning libraries in Python kunt gebruiken voor het doen van voorspellingen op basis van modellen.

  • Cursusvorm

    Al onze cursussen zijn klassikale cursussen waarbij de cursisten aan de hand van een ervaren trainer met diepgaande materie kennis door de stof worden geleid. Theorie wordt steeds afgewisseld met oefeningen.

    Maatwerk

    We doen ook maatwerk  en passen dan de cursusinhoud aan op uw wensen. Op verzoek gaan we ook in op uw praktijkcases.

    Cursustijden

    De cursustijden zijn in pricipe van 9.30 tot 16.30. Maar we zijn hierin flexibel. Soms moeten mensen namelijk kinderen naar de opvang brengen of halen en komen andere tijden hun beter uit. In goed overleg kunnen we dan andere cursustijden afspreken.

    Hardware

    Wij zorgen voor de computers waarop de cursus gehouden kan worden. Op deze computer is de voor de cursus benodigde software al geinstalleerd. U hoeft geen laptop mee te nemen om aan de cursus te kunnen deelnemen. Als u liever op uw eigen laptop werkt kunt u hem desgewenst meenemen. De benodigde software wordt dan aan het begin van de cursus geinstalleerd.

    Software

    Onze cursussen worden over het algemeen gegeven met Open Source software zoals Eclipse, IntelliJ, Tomcat, Pycharm, Anaconda en Netbeans. Het digitale cursusmateriaal krijgt u na de cursus mee naar huis.

    Lunch

    De cursus is inclusief lunch die we in een restaurantje op loopafstand van het cursuslokaal gebruiken.

    Locaties

    De cursussen worden op diverse plaatsen in het land gepland. Een cursus gaat op een locatie door als er zich minimaal 3 mensen voor die locatie inschrijven. Als er inschrijvingen voor verschillende locaties zijn gaat de cursus door op onze hoofdlocatie is Houten net onder Utrecht. Een cursus op onze hoofdlocatie gaat ook door bij 2 inschrijvingen en regelmatig ook bij 1 inschrijving.  Overigens doen we ook cursussen op de locatie van de klant als men daar prijs op stelt.