
PRG300 : C++ Programming
 Code : PRG300 Duration : 5 days Category : Programming

Audience :
This course is targeted at developers who want to learn programming in C++ and others who
want to understand C++ code.
Prerequisites :
Knowledge of and experience with C programming is required to attend this course.
Realization :
The theory is treated on the basis of presentation slides and is interspersed with exercises.
Illustrative demos are used to clarify the discussed concepts. The course material is in
English.

Contents :
In the course C++ Programming participants learn how to program in the C++ language. First the differences between C and C++ are discussed
concerning variable declarations, formatted output with the stream IO library, namespaces, function overloading and default function parameters.
Subsequently the new C++ reference variables are discussed. An important element of the course is the C++ class concept and C++
implementation of object-oriented principles such as abstraction and encapsulation. Attention is paid to dynamic memory allocation with new and
delete and the role of assignment operators and copy constructors. Also special features of classes such as statics, friends and iterators are
discussed. Next the object-oriented principles of inheritance and polymorphism are part of the subject matter. This includes the concepts of virtual
functions, v-tables, dynamic binding and abstract classes. C++ has the option to give existing operators a different meaning and this phenomenon
is discussed in the module operator overloading. Attention is paid to important features of the standard C++ library like the String class and the
base concepts of C++ templates and the Standard Template Library (STL). Finally exception handling and how this is implemented in C++ is
addressed.

Module 1 : Intro C++ Module 2 : References Module 3 : Classes
C++ Features
Comments in C++
I/O Stream Library
Output and Error Stream
Input Stream
Multiple Input Values
IO Stream Function get
Formatted Output
Function Prototypes
Default Function Arguments
Inline Functions
Macro Versus Inline Function
Overloading Functions
Variable Declaration
Namespaces
Scope Resolution Operator

References
Reference Initialization
References and Pointers
Reference to Constant
Passing References
Comparison Parameter Passing
References as Return Values
Potential Error
Potential Problem
Returning Reference to Global

Classes in C++
New Data Type in C
Class Declaration
Formal Class Declaration Syntax
Class Sections
Constructor
Destructor
Class Implementation
Member Functions
Class Usage
Calling Member Functions
Reading Data Members
Setting Data Members
Header and Sources Files
Advantages Access Functions
References to private Data
Constant Objects
Member Objects
Composition Example

Module 4 : Dynamic Memory Allocation Module 5 : Class Features Module 6 : Inheritance and Polymorphism
Dynamic Memory Allocation
new Operator
delete Operator
Dynamic Arrays
Classes with Pointer Data
Assignment Operator
Self-Assignment Problem
this Pointer
Using this Pointer
Chained Assignments
Assignment and Initialization
Initialization with Copy Constructor
Copy Constructors
Passing Objects
Returning Objects
Passing References to Objects

Static Members
Accessing Static Data Members
Initialization of Static Data Members
Static Member Functions
Friends
Friend Functions
Iterator Class
Arrays of Objects
Initializing Object Arrays
Free Store and Class Arrays
_set_new_handler Function
Overloading new and delete
Class Specific new and delete

Inheritance
Type Relations in C and C++
Derived Classes in C++
Class Hierarchy
Redefining Member Functions
Calling Redefined Members
Derived Class Constructors
Base – Derived Class Conversion
Pointer Conversions
Virtual Functions
Polymorphism
Dynamic Binding
Virtual Function Implementation
Virtual Function Table
Pure Virtual Functions
Abstract Classes
Multiple Inheritance
Duplication of Data Members
Virtual Derivation

Module 7 : Operator Overloading Module 8 : Templates Module 9 : Exception Handling
Operator Overloading
Overloading for Numeric Types
Overloading Rules
Overloading Restrictions
Not Overloadable Operators
When not to Overload
Numeric Class Overloading
Operators as Friend
Unary Overloading Operator

Function Templates
Macro’s versus Templates
Using Template Functions
Template Function Overriding
Class Templates
Template Array Class
Template Class Definition
Template Class Instantiation
Output Operator as Friend
Template Class Specialization
Template Class Static Members
new and delete in Template Classes
Template Initialization Statics
Memory Allocation Statics
Standard Template Library (STL)

Exception Handling in C++
Memory Exhaustion Handling
Exception Handling Principles
Throwing Exceptions
try Block
catch Handlers
Division By Zero Example
Benefits Exception Handling
Multiple catch Handlers
Template Array Class
Exceptions Array Class
Matching
catch Order
throw List


