
PRG404 : Advanced Python Programming
 Code : PRG404 Duration : 3 days Category : Scripting

Audience :
This course is for Python developers who want to know more about the Python language and
who wish to become proficient in advanced aspects of Python.
Prerequisites :
To participate in this course knowledge of and experience with programming in Python is
required.
Realization :
The theory is discussed on the basis of presentation slides. Illustrative demos illustrate the
concepts. The theory is interspersed with exercises. The course material is in English.

Contents :
In this course advanced aspects of the Python programming language that simplify and accelerate the development of Python software are
discussed. The latest versions of Python 2.x and 3.x add interesting features to the language and in this course participants learn how to use them.
Among other subjects iterators are addressed that allow lazy evaluation in the sense that an object is generated only when needed and generators
and coroutines for concurrent programming are discussed. The course continues with decorators that enable the addition of functionality to
existing functions and classes such as caching and proxying. Also context managers are discussed and it is shown that the with statement makes
code more robust and exception handling easier. In the module patterns several design patterns are examined in Python and attention is paid to
the pythonic principle that states “It’s Easier to ask for forgiveness than permission (EFAP).” This principle supports the robust exception handling
in Python. For many problems Python offers standard solutions that need Design Patterns in other environments. These pythonic solutions are
discussed in the module conventions. Furthermore, attention is paid to advanced features such as meta programming and the use of
comprehensions and descriptors. Finally the coding style according to the Python style guide (PEP8) is treated and the performance optimalization
of Python code.

Module 1 : Iterators and generators Module 2 : Decorators Module 3 : Context Managers
What are Iterators?
Lazy evaluation
yielding versus returning
itertools module
What are Generators?
Generator expressions
Bidirectional communication
Chaining generators
Coroutines

What are Decorators?
Tweaking original object
Replacing original object
Decorators on classes
Decorators on functions
Copying the docstring
Examples in library
Deprecation of functions
while-loop removing decorator
Plugin registration system

What are Context managers?
with statement
Catching exceptions
Defining context managers
Using Context managers
Examples standard library
contextlib

Module 4 : Patterns in Python Module 5 : Conventions in Python Module 6 : Meta Programming
EFAP principle
Singletons
Singleton variants
null Objects
null versus None
Proxies
Proxy examples
Observer
Publish and subscribe
Constructor

Pythonic principles
Out of the box solutions
Wrapping instead of inheritance
Dependency injections
Factories
Duck typing
Monkey patching
Callbacks

What are meta classes?
Default meta class
Dynamic classes
Creating classes
Creating object
Adding base classes
Adding fields
Adding methods
Meta class hook

Module 7 : Comprehensions Module 8 : Descriptors and Style Module 9 : Python Performance
What are comprehensions?
Lambda Operator
Filter
Reduce and Map
Functional Programming
Generator comprehensions
List comprehensions
Dictionary comprehensions
Set comprehensions

Python descriptors
Descriptors protocol
set, get and delete
Property type descriptors
Decorator type descriptors
Run time descriptors
Python style
Style guide PEP8
pylint and pep8.py

Optimization Guidelines
Influencing speed factors
Optimization strategies
Improving algorithms
Caching
Data Structures
Testing speed
Psyco JIT Compile


